Accelerating disorder–order transitions of FePt by preforming a metastable AgPt phase
نویسندگان
چکیده
Many approaches had been reported to successfully reduce the transition temperature of FePt from A1 to L10 phase, though without detailed knowledge. In this work, we deposited the metastable AgPt layer adjacent to the Fe layer and addressed the importance of vacancies in the disorder–order transition of FePt at reduced temperatures on the basis of a kinetic diffusion model. The decomposition of the metastable AgPt phase, creating excess vacancies during the post-deposition annealing process, accelerated the intermixing between Fe and Pt and the nucleation of L10 FePt. The evolution of phase transformation from AgPt–Fe to L10 FePt–Ag was monitored by in situ high temperature X-ray diffractometry and was also validated by first-principles calculations. The intermixing between Fe and Pt and the nucleation of L10 FePt after annealing at 230 C were directly observed by transmission electron microscopy and grazing incidence X-ray diffractometry, respectively. With the assistance of the decomposition of AgPt, we obtained a (001)-dominated L10 FePt film with an out-of-plane coercivity as large as 13.3 kOe after annealing at a temperature as low as 350 C. The principles of the proposed method can be applied for versatile disorder–order phase transitions. 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
خواص مغناطیسی بلوری آلیاژ نانوذرات آهن- پلاتین (L10-FePt) در گذار فاز
High magneto- crystalline anisotropy (ku=7×106j/m3) of L10-FePt nanoparticles are an excellent candidate for ultra high-density magnetic recording. The 4 nm FePt nanocrystals were prepared by superhydride reduction of FeCl2·4H2O and Pt(acac)2 precursors in the phenyl ether by reduction of the 1, 2-hexadecanediol and LiBEt3H superhydride. The crystal and magnetic structures were studied by XRD a...
متن کاملPhase transformations and thermodynamic properties of nanocrystalline FePt powders
The solid state reactions and structural evolution in nanocrystalline FePt powders during mechanical ball milling at 77 K and subsequent annealing have been investigated. Above 310 °C the formation of L10 FePt is observed. As the milling time increases, the enthalpy evolved during the transformations is reduced, whereas the corresponding activation energy increases. For accelerating the orderin...
متن کاملNon-Equilibrium Thermodynamics of Ferroelectric Phase Transitions
It is well known that the Landau theory of continuous phase transitions is a milestone in the process of the development of phase transition theories. Though it does not tally with the nature of phase transitions in the critical regions, the Landau theory as a phenomenological one has been very successful in many kinds of phase transitions such as the ferroelectric phase transitions, i.e. the v...
متن کاملCharacterization of the metastable Cu-Fe nanoparticles prepared by the mechanical alloying route
Although Cu and Fe are immiscible under equilibrium conditions, they can form supersaturated solid solutions by mechanical alloying. In this paper, nano-structured of the metastable Cu-Fe phase containing 10, 15, 20 and 25% wt Fe were synthesized by intensive ball milling for 15h, in order to achieve a solid solution of Fe in Cu. The phase composition, dissolution of the Fe atoms into the Cu ma...
متن کاملEffect of Amorphous Silica Addition on Martensitic Phase Transformation of Zirconia and Investigation of its Tetragonal Structure Stability Mechanisms
This work is focused on the effect of amorphous SiO2 addition on the phase transformation and microstructural evolution of ZrO2 particles. Considering the structural similarities between the amorphous ZrO2 and its tetragonal structure, XRD results showed initial nucleation of metastable tetragonal ZrO2 from its amorphous matrix upon heat treatment. This metastable phase is unstable in pure ZrO2...
متن کامل